Operator Theory and Arithmetic in H^∞

Hari Bercovici
1 The problem of moments,
J. A. Shohat and J. D. Tamarkin

2 The theory of rings,
N. Jacobson

3 Geometry of polynomials,
M. Marden

4 The theory of valuations,
O. F. G. Schilling

5 The kernel function and conformal mapping,
S. Bergman

6 Introduction to the theory of algebraic functions of one variable, C. C. Chevalley

7.1 The algebraic theory of semigroups, Volume I, A. H. Clifford and G. B. Preston

7.2 The algebraic theory of semigroups, Volume II, A. H. Clifford and G. B. Preston

8 Discontinuous groups and automorphic functions,
J. Lehner

9 Linear approximation,
Arthur Sard

10 An introduction to the analytic theory of numbers, R. Ayoub

11 Fixed points and topological degree in nonlinear analysis,
J. Cronin

12 Uniform spaces, J. R. Isbell

13 Topics in operator theory,
A. Brown, R. G. Douglas, C. Pearcy, D. Sarason, A. L. Shields; C. Pearcy, Editor

14 Geometric asymptotics,
V. Guillemin and S. Sternberg

15 Vector measures, J. Diestel and J. J. Uhl, Jr.

16 Symplectic groups,
O. Timothy O'Meara

17 Approximation by polynomials with integral coefficients,
Le Baron O. Ferguson

18 Essentials of Brownian motion and diffusion, Frank B. Knight

19 Contributions to the theory of transcendental numbers, Gregory V. Chudnovsky

20 Partially ordered abelian groups with interpolation, Kenneth R. Goodearl

21 The Bieberbach conjecture: Proceedings of the symposium on the occasion of the proof, Albert Baernstein, David Drasin, Peter Duren, and Albert Marden, Editors

22 Noncommutative harmonic analysis, Michael E. Taylor

23 Introduction to various aspects of degree theory in Banach spaces, E. H. Rothe

24 Noetherian rings and their applications, Lance W. Small, Editor

25 Asymptotic behavior of dissipative systems, Jack K. Hale
This page intentionally left blank
OPERATOR THEORY
AND ARITHMETIC IN H^∞
This page intentionally left blank
OPERATOR THEORY
AND ARITHMETIC IN H^∞

HARI BERCOVICI
1980 Mathematics Subject Classification (1985 Revision). Primary 47A45, 47A53, 47D25; Secondary 46E20, 46E25, 47A20, 47A60.

Library of Congress Cataloging-In-Publication Data
Bercovici, Hari, 1953-
Operator theory and arithmetic in $H_{[\infty]}$/Hari Bercovici.
p. cm. -- (Mathematical surveys and monographs, ISSN 0076-5376; no. 26)
On t.p. "$[\infty]$" appears as the infinity symbol.
Bibliography: p.
Includes index.
1. Contraction operators. 2. Fredholm operators. 3. Hilbert space. I. Title. II. Series.
QA329.2.B47 1988
515.7'24--dc19 88-10344

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Executive Director, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940.

The owner consents to copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law, provided that a fee of $1.00 plus $.25 per page for each copy be paid directly to the Copyright Clearance Center, Inc., 21 Congress Street, Salem, Massachusetts 01970. When paying this fee please use the code 0076-5376/88 to refer to this publication. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotion purposes, for creating new collective works, or for resale.

Copyright ©1988 by the American Mathematical Society. All rights reserved.
Printed in the United States of America
The American Mathematical Society retains all rights except those granted to the United States Government.
The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
To the memory of Irina Gorun
This page intentionally left blank
Contents

Introduction xi

Chapter I. An Introduction to Dilation Theory 1
 1. Unitary dilations of contractions 1
 2. Isometries and unitary operators 8
 3. Cyclic multiplicity and quasiaffine transforms 12

Chapter II. The Class C_0 15
 1. Functional calculus and the class C_0 15
 2. The arithmetic of inner functions 20
 3. Minimal functions and maximal vectors 26
 4. General properties of operators of class C_0 29

Chapter III. Classification Theory 35
 1. A case study: Jordan blocks 36
 2. Multiplicity-free operators 43
 3. The splitting principle 47
 4. Jordan operators 51
 5. The classification theorem 56
 6. Approximate decompositions 66

Chapter IV. Applications of Jordan Models 73
 1. Algebras generated by T, and reflexivity 73
 2. Hyperinvariant subspaces 84
 3. Semigroups and Volterra operators 92
 4. Representations of the convolution algebra $L^1(0,1)$ 101

Chapter V. Characteristic Functions and the Class C_0 109
 1. Functional models of contractions 109
 2. Tensor operations 120
 3. Scalar multiples 128
Chapter VI. Weak Contractions 139
 1. Determinants, adjoints, and minors 140
 2. Determinants of analytic functions 146
 3. Defect operators and weak contractions 149
 4. Defect operators and splitting 158
 5. Invariant factors and quasiequivalence 165
 6. The calculation of Jordan models from $*$-cyclic sets 174

Chapter VII. Fredholm Theory 181
 1. Finiteness properties 182
 2. Operators with property (Q) 190
 3. A continuity property of the Jordan model 195
 4. Generalized inner functions 199
 5. Operators with equal dimensions 206
 6. C_0-Fredholm operators 216
 7. Perturbation theorems. The bicommutant 225

Chapter VIII. Miscellaneous Applications 231
 1. Compact intertwining operators 231
 2. Compact intertwining operators; the C_0 case 239
 3. Subisometric dilations 242
 4. State spaces 245

Appendix: Notes and Comments 251

References 257

List of Notation 267

Subject Index 271
Introduction

The deep relationship between linear algebra and the arithmetical properties of polynomial rings is well understood, and a highlight is naturally Jordan’s classification theorem for linear transformations on a finite-dimensional vector space. The methods and results of finite-dimensional linear algebra seldom extend to, or have analogues in, infinite-dimensional operator theory. Thus it is remarkable to have a class of operators whose properties are closely related with the arithmetic of the ring \(H^\infty \) of bounded analytic functions in the unit disc and for which a classification theorem is available, analogous to Jordan’s classical result. Such a class is the class \(C_0 \), discovered by B. Sz.-Nagy and C. Foiaş in their work on canonical models for contraction operators on Hilbert space. A contraction operator belongs to this class if and only if the associated functional calculus on \(H^\infty \) has a nontrivial kernel. The class \(C_0 \) is the central object of study of this monograph, but we have included other related topics where it seemed appropriate. In an effort to make the book as self-contained as possible we give an introduction to the theory of dilations and functional models for contraction operators (see Chapters 1 and 5). While this introduction is adequate for our purposes, the reader familiar with the basic book [6] by Sz.-Nagy and Foiaş will be able to put the subject matter of this monograph in a greater perspective. Prerequisites for this book are a course in functional analysis (Rudin [2], for instance, will cover most of what we need) and an acquaintance with the theory of Hardy spaces in the unit disc (either Hoffman [1] or Duren [1] covers the required material). In addition, knowledge of the trace class of operators is needed in Chapter 6 (see, for example, Gohberg and Krein [1]).

Quite possibly, the class \(C_0 \) is the best understood class of nonnormal operators on a Hilbert space, even though there are still unsolved problems and unexplored avenues. Besides its intrinsic interest and direct applications, operators of class \(C_0 \) are very helpful as a source of inspiration, and in constructing examples and counterexamples in other branches of operator theory. Interestingly, the class \(C_0 \) also surfaces in certain problems of control and realization theory. It is hoped that this book will be interesting for operator theorists (present or to be), as well as those theoretical engineers who are interested in the applications of operator theory.
I tried to make this book more useful by including a number of exercises for each section. The numbering of theorems, propositions, etc. is conceived such as to make cross-references easy. For instance, Theorem 8.1.8 is in §1 of Chapter 8, and it is followed by relation (8.1.9) and Lemma 8.1.10. The first numeral is omitted for references within the same chapter. Each chapter begins with a description of the material to be covered. References to the literature and historical comments are kept to a minimum in the text. There is an appendix dedicated to these questions.

My teachers, colleagues, and friends Ciprian Foiaș, Carl Pearcy, Béla Sz.-Nagy, and Dan Voiculescu encouraged me at various times to write this book. Part of the book or earlier versions of some chapters were written while I was at the University of Michigan, the Massachusetts Institute of Technology, the Mathematical Sciences Research Institute, and Indiana University. Much of the material was presented in a seminar at the University of Michigan. I am grateful to all of these institutions for their hospitality and to some of them for help in typing the manuscript.

My wife Irina, with her exceptional talent and warmth, has been an inspiration for me during most of my mathematical life. Irina helped me get through difficult times and gave me determination and ambition when I lacked them. This book is dedicated to her memory.

Hari Bercovici
CHAPTER 1

An Introduction to Dilation Theory

Any contraction, i.e., operator of norm \(\leq 1 \), on a Hilbert space has a unitary dilation. This is Sz.-Nagy’s theorem, and it was the starting point of an important branch in operator theory. In this chapter we give the basic elements of dilation theory, which will help us enter the subject proper of the book in Chapter 2. In Section 1 we present Sz.-Nagy’s dilation theorem mentioned above. As a consequence we deduce the decomposition of any contraction into a direct sum of unitary and completely nonunitary parts. We also give a proof of the commutant lifting theorem, which relates the commutant of a contraction with the commutants of its isometric and unitary dilations. Section 2 contains more detailed information about the minimal isometric dilation of an operator. It is shown that the completely nonunitary summand of an isometry is a unilateral shift, and conditions are given on an operator which ensure that its minimal isometric dilation is a unilateral shift. An important result concerns the absolute continuity (with respect to Lebesgue arclength measure on the unit circle) of the minimal unitary dilation. In Section 3 we discuss the notions of cyclic multiplicity, quasisimilarity, and quasiaffine transforms. The latter two notions are weak forms of similarity. The most important result (Theorem 3.7) relates an operator \(T \), with small cyclic multiplicity, to a simpler operator. This result is the starting point of the classification theory of operators of class \(C_0 \).

1. Unitary dilations of contractions. Let \(T \) be a contraction on the Hilbert space \(\mathcal{H} \). We will use the following notation:

\[
\begin{align*}
D_T &= (I - T^*T)^{1/2}, & D_{T^*} &= (I - TT^*)^{1/2}, \\
\mathcal{D}_T &= (\text{ran } D_T)^-, & \mathcal{D}_{T^*} &= (\text{ran } D_{T^*})^-.
\end{align*}
\]

The operator \(D_T \) is called the defect operator of \(T \) and \(\mathcal{D}_T \) the defect space. Using the functional calculus for selfadjoint operators, it is easy to see that the obvious relation \(T(I - T^*T) = (I - TT^*)T \) implies

\[TD_T = D_{T^*}T.\]

In particular, we have \(T\mathcal{D}_T \subset \mathcal{D}_{T^*} \).

Easier to understand among contractions are the isometric and unitary operators. Arbitrary contractions can be related to isometries using dilations. We
recall that if \mathcal{H} is a Hilbert space, $\mathcal{H} \subset \mathcal{H}$ is a subspace, $S \in \mathcal{L}(\mathcal{H})$, and $T \in \mathcal{L}(\mathcal{H})$, then S is a dilation of T (and T is a power-compression of S) provided that

$$T^n = P_{\mathcal{H}} S^n |_{\mathcal{H}}, \quad n = 0, 1, 2, \ldots.$$

If, in addition, S is an isometry (unitary operator) then S will be called an isometric (unitary) dilation of T. An isometric (unitary) dilation S of T is said to be minimal if no restriction of S to an invariant subspace is an isometric (unitary) dilation of T. The following result is left as an exercise.

1.3. LEMMA. Let S be an isometric (unitary) dilation of T. Then S is a minimal isometric (unitary) dilation of T if and only if $\bigvee_{n=0}^{\infty} S^n \mathcal{H} = \mathcal{H}$ ($\bigvee_{n=-\infty}^{\infty} S^n \mathcal{H} = \mathcal{H}$).

The proof of the next result is motivated by the following calculation:

$$||x||^2 - ||Tx||^2 = (x, x) - (T^* Tx, x) = ||D_T x||^2,$$

$x \in \mathcal{H}$,

which shows that the operator $X : \mathcal{H} \to \mathcal{H} \oplus \mathcal{H}$ defined by $X x = Tx \oplus D_T x$ is isometric. Of course, X is not a dilation of T because it acts between two different Hilbert spaces.

1.4. THEOREM. Every contraction $T \in \mathcal{L}(\mathcal{H})$ has a minimal isometric dilation. This dilation is unique in the following sense: if $S \in \mathcal{L}(\mathcal{H})$ and $S' \in \mathcal{L}(\mathcal{H}')$ are two minimal isometric dilations for T, then there exists an isometry U of \mathcal{H} onto \mathcal{H}' such that $U x = x$, $x \in \mathcal{H}$, and $S' U = U S$.

PROOF. We first prove the uniqueness part. Thus, let $S \in \mathcal{L}(\mathcal{H})$ and $S' \in \mathcal{L}(\mathcal{H}')$ be two minimal isometric dilations of T and note that, by Lemma 1.3, we have

$$\mathcal{H} = \bigvee_{n=0}^{\infty} S^n \mathcal{H}, \quad \mathcal{H}' = \bigvee_{n=0}^{\infty} S'^n \mathcal{H}.$$

If $\{x_j\}_{j=0}^{\infty}$ is a finitely nonzero family of vectors in \mathcal{H}, we have

$$\left|\sum_{j=0}^{\infty} S^j x_j \right|^2 = \sum_{j,k=0}^{\infty} (S^j x_j, S^k x_k).$$

Since S is an isometry, we have $(S^j x_j, S^k x_k) = (S^{j'} x_j, S^{k'} x_k)$ if $k - j = k' - j'$ and therefore

$$\left|\sum_{j=0}^{\infty} S^j x_j \right|^2 = \sum_{j \geq k} (S^{j-k} x_j, x_k) + \sum_{j < k} (x_j, S^{k-j} x_k)$$

$$= \sum_{j \geq k} (S^{j-k} x_j, P_{\mathcal{H}} x_k) + \sum_{j < k} (P_{\mathcal{H}} x_j, S^{k-j} x_k)$$

$$= \sum_{j \geq k} (P_{\mathcal{H}} S^{j-k} x_j, x_k) + \sum_{j < k} (x_j, P_{\mathcal{H}} S^{k-j} x_k)$$

$$= \sum_{j \geq k} (T^{j-k} x_j, x_k) + \sum_{j < k} (x_j, T^{k-j} x_k),$$
where we used the fact that S is a power-dilation of T. A similar computation for S' shows that $\|\sum_{j=0}^{\infty} S^j x_j \| = \|\sum_{j=0}^{\infty} S'^j x_j \|$. This easily implies the existence of an isometry U of \mathcal{H} onto \mathcal{H}' satisfying

$$U \left(\sum_{j=0}^{\infty} S^j x_j \right) = \sum_{j=0}^{\infty} S'^j x_j$$

for every finitely nonzero sequence $\{x_j\}_{j=0}^{\infty}$ in \mathcal{H}. Clearly then $Ux = x$, $x \in \mathcal{H}$, and $S'U = US$, so that uniqueness is proved.

For the existence part, we define the space \mathcal{H}_+ by

$$\mathcal{H}_+ = \mathcal{H} \oplus \left(\bigoplus_{n=0}^{\infty} \mathcal{D}_n \right), \quad \mathcal{D}_n = \mathcal{D}_T, \ n = 0, 1, 2, \ldots,$$

and the operator $U_+ \in \mathcal{L}(\mathcal{H}_+)$ by

$$U_+ \left(x \oplus \left(\bigoplus_{n=0}^{\infty} d_n \right) \right) = Tx \oplus \left(\bigoplus_{n=0}^{\infty} e_n \right)$$

where $e_0 = D_T x$ and $e_n = d_{n-1}$, $n \geq 1$. Since $\|Tx\|^2 + \|D_T x\|^2 = \|x\|^2$, it is obvious that U_+ is an isometry. It is also clear that U_+ is an isometric dilation of T, if we identify the vector $x \in \mathcal{H}$ with the vector $x \oplus (\bigoplus_{n=0}^{\infty} 0) \in \mathcal{H}$; in fact \mathcal{H} is invariant under U_+^* and $T^* = U_+^* | \mathcal{H}$. It remains to be shown that U_+ is minimal. It is clear that $\mathcal{H} \vee U_+ \mathcal{H}$ contains all elements of the form $0 \oplus D_T x \oplus 0 \oplus \cdots, x \in \mathcal{H}$, so that

$$\mathcal{H} \vee U_+ \mathcal{H} = \mathcal{H} \oplus \mathcal{D}_T \oplus \{0\} \oplus \cdots.$$

It now follows from the definition of U_+ that

$$\bigvee_{j=0}^{n} U_+^j \mathcal{H} = \mathcal{H} \oplus \mathcal{D}_T \oplus \mathcal{D}_T \oplus \cdots \oplus \mathcal{D}_T \oplus \{0\} \oplus \cdots$$

and the minimality of U_+ follows from Lemma 1.3.

The following result is the counterpart of Theorem 1.4 for unitary dilations.

1.5. THEOREM. Every contraction $T \in \mathcal{L}(\mathcal{H})$ has a minimal unitary dilation, unique in the sense specified in Theorem 1.4.

PROOF. The uniqueness is proved using the same calculation as in the proof of Theorem 1.4, except that one would consider sums of the form $\sum_{j=-\infty}^{\infty} S^j x_j$, $x_j \in \mathcal{H}$. In order to prove the existence of a minimal unitary dilation we consider the space \mathcal{H} defined as

$$\mathcal{H} = \left(\bigoplus_{j=-\infty}^{0} \mathcal{E}_j \right) \oplus \mathcal{H} \oplus \left(\bigoplus_{j=0}^{\infty} \mathcal{D}_j \right),$$
where $\mathcal{E}_{-j} = \mathcal{D}_T$, and $\mathcal{D}_j = \mathcal{D}_T$, $j = 0, 1, 2, \ldots$, and the operator $U \in \mathcal{L}(\mathcal{H})$ defined by

$$U \left(\left(\bigoplus_{j=-\infty}^{0} e_j \right) \oplus x \oplus \left(\bigoplus_{j=0}^{\infty} d_j \right) \right) = \left(\bigoplus_{j=-\infty}^{0} e'_j \right) \oplus x' \oplus \left(\bigoplus_{j=0}^{\infty} d'_j \right),$$

where $x' = Tx + DT_e e_0$, $d'_0 = -T^* e_0 + DT_e x$, $d'_j = d_{j-1}$, $j \geq 1$, and $e'_j = e_{j-1}$, $j \leq 0$. The space \mathcal{H}_+, constructed in the previous proof, can be identified with $\{0\} \oplus \mathcal{H}_+ \subset \mathcal{H}$, and clearly $U_+ = U \mid \mathcal{H}_+$. It follows at once that U becomes a dilation of T upon the identification of \mathcal{H} with $\{0\} \oplus \mathcal{H} \oplus \{0\} \subset \mathcal{H}$. In order to show that U is unitary it suffices to show that U and U^* are isometries. The fact that U is an isometry is equivalent to the identity

$$||Tx + DT_e e_0||^2 + ||-T^* e_0 + DT_e x||^2 = ||e_0||^2 + ||x||^2, \quad e_0 \in \mathcal{D}_T, \quad x \in \mathcal{H}.$$

The left-hand side of this identity can be rewritten as follows:

$$||Tx||^2 + ||DT_e e_0||^2 + 2 \Re(Tx, DT_e e_0) + ||T^* e_0||^2$$

$$+ ||DT_e x||^2 - 2 \Re(DT_e x, T^* e_0)$$

$$= ||x||^2 + ||e_0||^2 + 2 \Re[(x, T^* DT_e e_0) - (x, DT_e T^* e_0)],$$

and the required identity follows from (1.2) applied to T^*. The minimality of U and the fact that U^* is also an isometry are left as exercises.

As noted above, the space \mathcal{H}_+ constructed in the proof of Theorem 1.4 can (and shall) be considered as a subspace of \mathcal{H}, invariant under U:

$$U_+ = U \mid \mathcal{H}_+.$$

Thus U is also a minimal unitary dilation of U_+. In fact U^* is the minimal isometric dilation of U_+^* and therefore a different proof of Theorem 1.5 would consist in showing that the minimal isometric dilation of an operator of the form U_+^* is always unitary. We chose the above proof because it is more difficult to identify the defect space of U_+^* in terms of the original operator T.

1.6. DEFINITION. A contraction $T \in \mathcal{L}(\mathcal{H})$ is said to be completely nonunitary if there is no invariant subspace \mathcal{M} for T such that $T \mid \mathcal{M}$ is a unitary operator.

An important consequence of Theorem 1.5 is the following.

1.7. PROPOSITION. For every contraction $T \in \mathcal{L}(\mathcal{H})$ there exist reducing subspaces $\mathcal{H}_0, \mathcal{H}_1$ for T such that

(i) $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1$;

(ii) $T \mid \mathcal{H}_1$ is completely nonunitary; and

(iii) $T \mid \mathcal{H}_0$ is a unitary operator.

The spaces \mathcal{H}_0 and \mathcal{H}_1 are uniquely determined by conditions (i)–(iii).

PROOF. Let $U \in \mathcal{L}(\mathcal{H})$ be a minimal unitary dilation of T. Denote by \mathcal{H}_0 the reducing subspace for U generated by $\mathcal{H} \ominus \mathcal{H}$ and set $\mathcal{H}_0 = \mathcal{H} \ominus \mathcal{H}_0$. Obviously $\mathcal{H}_0 \subset \mathcal{H}$ and $Tx = Ux, x \in \mathcal{H}_0$, because \mathcal{H}_0 reduces U. Thus \mathcal{H}_0 is
reducing for T and $T \mid \mathcal{H}_0 = U \mid \mathcal{H}_0$ is unitary. We now set $\mathcal{H}_1 = \mathcal{H} \ominus \mathcal{H}_0$ and prove that $T \mid \mathcal{H}_1$ is completely nonunitary. If $\mathcal{M} \subset \mathcal{H}$ is invariant for T and $T \mid \mathcal{M}$ is unitary then the equalities

$$||h|| = ||Th|| = ||P_{\mathcal{M}}Uh||, \quad h \in \mathcal{M},$$

imply that $Th = Uh$ for $h \in \mathcal{M}$. Thus \mathcal{M} is invariant for U, $U \mid \mathcal{M}$ is unitary, and hence \mathcal{M} is reducing for U. Now, \mathcal{M} is orthogonal onto $\mathcal{H} \ominus \mathcal{H}_0$ and therefore onto \mathcal{H}_0; we deduce that $\mathcal{M} \subset \mathcal{H}_0$. This argument shows at once that $T \mid \mathcal{H}_1$ is completely nonunitary and that the decomposition $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1$ is unique with the properties (i)-(iii).

The preceding result shows that the study of general contractions can be reduced in many cases to the study of the completely nonunitary ones.

Before proving an important property of isometric and unitary dilations we study in further detail the space of the minimal isometric dilation of a contraction $T \in \mathcal{L}(\mathcal{H})$. Let us denote by \mathcal{H}_n, $n = 0, 1, 2, \ldots$, the subspace of \mathcal{H}_+ defined as

$$\mathcal{H}_n = \mathcal{H} \oplus \mathcal{D}_T \oplus \mathcal{D}_T \oplus \cdots \oplus \mathcal{D}_T \oplus \{0\} \oplus \cdots$$

Thus $\mathcal{H}_0 = \mathcal{H}$ and each \mathcal{H}_n is invariant for U_+^*. If we set $T_n = P_{\mathcal{H}_n}U_+ \mid \mathcal{H}_n$, then T_{n+1} is a dilation of T_n for every n. The contractions T_n can be viewed differently. For an arbitrary contraction $S \in \mathcal{L}(\mathcal{H})$ we can construct a dilation S_\sim of S on $\mathcal{H} \oplus \mathcal{D}_S$ defined by

$$(1.8) \quad S_\sim(x \oplus y) = Sx \oplus DSx.$$

Clearly then S_\sim is a partial isometry and

$$\mathcal{D}_{S_\sim} = \ker S_\sim = \{0\} \oplus \mathcal{D}_S.$$

Thus if we repeat this procedure, we can construct a partial isometry $S_{\sim \sim} = (S_\sim)_\sim$ which dilates S_\sim, acts on $\mathcal{H} \oplus \mathcal{D}_S \oplus \mathcal{D}_S$, and is defined by

$$S_{\sim \sim}(x \oplus y \oplus z) = Sx \oplus DSx \oplus y.$$

It is clear now that the contractions T_n considered above satisfy the relations

$$T_{n+1} = (T_n)_\sim, \quad n = 0, 1, 2, \ldots,$$

up to natural unitary equivalences.

1.9. PROPOSITION. Let $T \in \mathcal{L}(\mathcal{H})$ and $T' \in \mathcal{L}(\mathcal{H}')$ be two contractions, and let $X \in \mathcal{L}(\mathcal{H}, \mathcal{H}')$ satisfy the intertwining relation $T'X = XT$. Then there exists an operator $Y \in \mathcal{L}(\mathcal{H} \oplus \mathcal{D}_T, \mathcal{H}' \oplus \mathcal{D}_{T'})$ such that

(i) $Y(\{0\} \oplus \mathcal{D}_T) \subset \{0\} \oplus \mathcal{D}_{T'}$;

(ii) $P_{\mathcal{H}'}Y \mid \mathcal{H} = X$;

(iii) $||Y|| = ||X||$; and

(iv) $T'_\sim Y = YT_\sim$, where T_\sim and T'_\sim are the dilations of T and T' described by (1.8).